Agile Team Composition: Generalists versus Specialists

Estimating levels of effort for a set of tasks by a group of individuals well qualified to complete those tasks can efficiently and reliable be determined with a collaborative estimation process like planning poker. Such teams have a good measure of skill overlap. In the context of the problem set, each of the team members are generalist in the senseĀ  it’s possible for any one team member to work on a variety of cross functional tasks during a sprint. Differences in preferred coding language among team members, for example, is less an issue when everyone understands advanced coding practices and the underlying architecture for the solution.

With a set of complimentary technical skills it’s is easier agree on work estimates. There are other benefits that flow from well-matched teams. A stable sprint velocity emerges much sooner. There is greater cross functional participation. And re-balancing the work load when “disruptors” occur – like vacations, illness, uncommon feature requests, etc. – is easier to coordinate.

Once the set of tasks starts to include items that fall outside the expertise of the group and the group begins to include cross functional team members, a process like planning poker becomes increasingly less reliable. The issue is the mismatch between relative scales of expertise. A content editor is likely to have very little insight into the effort required to modify a production database schema. Their estimation may be little more than a guess based on what they think it “should” be. Similarly for a coder faced with estimating the effort needed to translate 5,000 words of text from English to Latvian. Unless, of course, you have an English speaking coder on your team who speaks fluent Latvian.

These distinctions are easy to spot in project work. When knowledge and solution domains have a great deal of overlap, generalization allows for a lot of high quality collaboration. However, when an Agile team is formed to solve problems that do not have a purely technical solution, specialization rather than generalization has a greater influence on overall success. The risk is that with very little overlap specialized team expertise can result in either shallow solutions or wasteful speculation – waste that isn’t discovered until much later. Moreover, re-balancing the team becomes problematic and most often results in delays and missed commitments due to the limited ability for cross functional participation among team mates.

The challenge for teams where knowledge and solution domains have minimal overlap is to manage the specialized expertise domains in a way that is optimally useful, That is, reliable, predictable, and actionable. Success becomes increasingly dependent on how good an organization is at estimating levels of effort when the team is composed of specialists.

One approach I experimented with was to add a second dimension to the estimation: a weight factor to the estimator’s level of expertise relative to the nature of the card being considered. The idea is that with a weighted expertise factor calibrated to the problem and solution contexts, a more reliable velocity emerges over time. In practice, was difficult to implement. Teams spent valuable time challenging what the weighted factor should be and less experienced team members felt their opinion had been, quite literally, discounted.

The approach I’ve had the most success with on teams with diverse expertise is to have story cards sized by the individual assigned to complete the work. This still happens in a collaborative refinement or planning session so that other team members can contribute information that is often outside the perspective of the work assignee. Dependencies, past experience with similar work on other projects, missing acceptance criteria, or a refinement to the story card’s minimum viable product (MVP) definition are all examples of the kind of information team members have contributed. This invariably results in an adjustment to the overall level of effort estimate on the story card. It also has made details about the story card more explicit to the team in a way that a conversation focused on story point values doesn’t seem to achieve. The conversation shifts from “What are the points?” to “What’s the work needed to complete this story card?”

I’ve also observed that by focusing ownership of the estimate on the work assignee, accountability and transparency tend to increase. Potential blockers are surfaced sooner and team members communicate issues and dependencies more freely with each other. Of course, this isn’t always the case and in a future post we’ll explore aspects of team composition and dynamics that facilitate or prevent quality collaboration.

Leave a Reply

Your email address will not be published. Required fields are marked *