Story Points and Fuzzy Bunnies

The scrum framework is forever tied to the language of sports in general and rugby in particular. We organize our project work around goals, sprints, points, and daily scrums. An unfortunate consequence of organizing projects around a sports metaphor is that the language of gaming ends up driving behavior. For example, people have a natural inclination to associate the idea of story points to a measure of success rather than an indicator of the effort required to complete the story. The more points you have, the more successful you are. This is reflected in an actual quote from a retrospective on things a team did well:

We completed the highest number of points in this sprint than in any other sprint so far.

This was a team that lost sight of the fact they were the only team on the field. They were certain to be the winning team. They were also destine to be he losing team. They were focused on story point acceleration rather than a constant, predictable velocity.

More and more I’m finding less and less value in using story points as an indicator for level of effort estimation. If Atlassian made it easy to change the label on JIRA’s story point field, I’d change it to “Fuzzy Bunnies” just to drive this idea home. You don’t want more and more fuzzy bunnies, you want no more than the number you can commit to taking care of in a certain span of time typically referred to as a “sprint.” A team that decides to take on the care and feeding of 50 fuzzy bunnies over the next two weeks but has demonstrated – sprint after sprint – they can only keep 25 alive is going to lose a lot of fuzzy bunnies over the course of the project.

It is difficult for people new to scrum or Agile to grasp the purpose behind an abstract idea like story points. Consequently, they are unskilled in how to use them as a measure of performance and improvement. Developing this skill can take considerable time and effort. The care and feeding of fuzzy bunnies, however, they get. Particularly with teams that include non-technical domains of expertise, such as content development or learning strategy.

A note here for scrum masters. Unless you want to exchange your scrum master stripes for a saddle and spurs, be wary of your team turning story pointing into an animal farm. Sizing story cards to match the exact size and temperament from all manner of animals would be just as cumbersome as the sporting method of story points. So, watch where you throw your rope, Agile cowboys and cowgirls.

(This article cross-posted at LinkedIn)

Image credit: tsaiproject (Modified in accordance with Creative Commons Attribution 2.0 Generic license)

How to Know You Have a Well Defined Minimum Viable Product

Conceptually, the idea of a minimum viable product (MVP) is easy to grasp. Early in a project, it’s a deliverable that reflects some semblance to the final product such that it’s barely able to stand on it’s own without lots of hand-holding and explanation for the customer’s benefit. In short, it’s terrible, buggy, and unstable. By design, MVPs lack features that may eventually prove to be essential to the final product. And we deliberately show the MVP to the customer!

We do this because the MVP is the engine that turns the build-measure-learn feedback loop. The key here is the “learn” phase. The essential features to the final product are often unclear or even unknown early in a project. Furthermore, they are largely undefinable or unknowable without multiple iterations through the build-measure-learn feedback cycle with the customer early in the process.

So early MVPs aren’t very good. They’re also not very expensive. This, too, is by design because an MVP’s very raison d’être is to test the assumptions we make early on in a project. They are low budget experiments that follow from a simple strategy:

  1. State the good faith assumptions about what the customer wants and needs.
  2. Describe the tests the MVP will satisfy that are capable of measuring the MVP’s impact on the stated assumptions.
  3. Build an MVP that tests the assumptions.
  4. Evaluate the results.

If the assumptions are not stated and the tests are vague, the MVP will fail to achieve it’s purpose and will likely result in wasted effort.

The “product” in “minimum viable product” can be almost anything: a partial or early design flow, a wireframe, a collection of simulated email exchanges, the outline to a user guide, a static screen mock-up, a shell of screen panels with placeholder text that can nonetheless be navigated – anything that can be placed in front of a customer for feedback qualifies as an MVP. In other words, a sprint can contain multiple MVPs depending on the functional groups involved with the sprint and the maturity of the project. As the project progresses, the individual functional group MVPs will begin to integrate and converge on larger and more refined MVPs, each gaining in stability and quality.

MVPs are not an end unto themselves. They are tangible evidence of the development process in action. The practice of iteratively developing MVPs helps develop to skill of rapid evaluation and learning among product owners and agile delivery team members. A buggy, unstable, ugly, bloated, or poorly worded MVP is only a problem if it’s put forward as the final product. The driving goal behind iterative MVPs is not perfection, rather it is to support the process of learning what needs to be developed for the optimal solution that solves the customer’s problems.

“Unlike a prototype or concept test, an MVP is designed not just to answer product design or technical questions. Its goal is to test fundamental business hypotheses.” – Eric Ries, The Lean Startup

So how might product owners and Agile teams begin to get a handle on defining an MVP? There are several questions the product owner and team can ask of themselves, in light of the product backlog, that may help guide their focus and decisions. (Use of the following term “stakeholders” can mean company executives or external customers.)

  • Identify the likely set of stakeholders who will be attending the sprint review. What will these stakeholders need to see so that they can offer valuable feedback? What does the team need to show in order to spark the most valuable feedback from the stakeholders?
  • What expectations have been set for the stakeholders?
  • Is the distinction clear between what the stakeholders want vs what they need?
  • Is the distinction clear between high and low value? Is the design cart before the value horse?
  • What are the top two features or functions the stakeholders  will be expecting to see? What value – to the stakeholders – will these features or functions deliver?
  • Will the identified features or functions provide long term value or do they risk generating significant rework down the road?
  • Are the identified features or functions leveraging code, content, or UI/UX reuse?

Recognizing an MVP – Less is More

Since an MVP can be almost anything,  it is perhaps easier to begin any conversation about MVPs by touching on the elements missing from an MVP.

An MVP is not a quality product. Using any generally accepted definition of “quality” in the marketplace, an MVP will fail on all accounts. Well, on most accounts. The key is to consider relative quality. At the beginning of a sprint, the standards of quality for an MVP are framed by the sprint goals and objectives. If it meets those goals, the team has successfully created a quality MVP. If measured against the external marketplace or the quality expectations of the customer, the MVP will almost assuredly fail inspection.

Your MVPs will probably be ugly, especially at first. They will be missing features. They will be unstable. Build them anyway. Put them in front of the customer for feedback. Learn. And move on to the next MVP. Progressively, they will begin to converge on the final product that is of high quality in the eyes of the customer. MVPs are the stepping stones that get you across the development stream and to the other side where all is sunny, beautiful, and stable. (For more information on avoiding the trap of presupposing what a customer means by quality and value, see “The Value of ‘Good Enough’“)

An MVP is not permanent. Agile teams should expect to throw away several, maybe even many, MVPs on their way to the final product. If they aren’t, then it is probable they are not learning what they need to about what the customer actually wants. In this respect, waste can be a good, even important thing. The driving purpose of the MVP is to rapidly develop the team’s understanding of what the customer needs, the problems they are expecting to have solved, and the level of quality necessary to satisfy each of these goals.

MVPs are not the truth. They are experiments meant to get the team to the truth. By virtue of their low-quality, low-cost nature, MVPs quickly shake out the attributes to the solution the customer cares about and wants. The solid empirical foundation they provide is orders of magnitude more valuable to the Agile team than any amount of speculative strategy planning or theoretical posturing.

(This article cross-posted on LinkedIn.)

The Value of “Good Enough”

Any company interested in being successful, whether offering a product or service, promises quality to its customers. Those that don’t deliver, die away. Those that do, survive. Those that deliver quality consistently, thrive. Seems like easy math. But then, 1 + 1 = 2 seems like easy math until you struggle through the 350+ pages Whitehead and Russell1 spent on setting up the proof for this very equation. Add the subjective filters for evaluating “quality” and one is left with a measure that can be a challenge to define in any practical way.

Math aside, when it comes to quality, everyone “knows it when they see it,” usually in counterpoint to a decidedly non-quality experience with a product or service. The nature of quality is indeed chameleonic – durability, materials, style, engineering, timeliness, customer service, utility, aesthetics – the list of measures is nearly endless. Reading customer reviews can reveal a surprising array of criteria used to evaluate the quality for a single product.

The view from within the company, however, is even less clear. Businesses often believe they know quality when they see it. Yet that belief is often predicate on how the organization defines quality, not how their customers define quality. It is a definition that is frequently biased in ways that accentuate what the organization values, not necessarily what the customer values.

Organization leaders may define quality too high, such that their product or service can’t be priced competitively or delivered to the market in a timely manner. If the high quality niche is there, the business might succeed. If not, the business loses out to lower priced competitors that deliver products sooner and satisfy the customer’s criteria for quality (see Figure 1).

Figure 1. Quality Mismatch I
Figure 1. Quality Mismatch I

Certainly, there is a case that can be made for providing the highest quality possible and developing the business around that niche. For startups and new product development, this may not be be best place to start.

On the other end of the spectrum, businesses that fall short of customer expectations for quality suffer incremental, or in some cases catastrophic, reputation erosion. Repairing or rebuilding a reputation for quality in a competitive market is difficult, maybe even impossible (see Figure 2).

Figure 2. Quality Mismatch II
Figure 2. Quality Mismatch II

The process for defining quality on the company side of the equation, while difficult, is more or less deliberate. Not so on the customer side. Customers often don’t know what they mean by “quality” until they have an experience that fails to meet their unstated, or even unknown, expectations. Quality savvy companies, therefore, invest in understanding what their customers mean by “quality” and plan accordingly. Less guess work, more effort toward actual understanding.

Furthermore, looking to what the competition is doing may not be the best strategy. They may be guessing as well. It may very well be that the successful quality strategy isn’t down the path of adding more bells and whistles that market research and focus groups suggest customers want. Rather, it may be that improvements in existing features and services are more desirable.

Focus on being clear about whether or not potential customers value the offered solution and how they define value. When following an Agile approach to product development, leveraging minimum viable product definitions can help bring clarity to the effort. With customer-centric benchmarks for quality in hand, companies are better served by first defining quality in terms of “good enough” in the eyes of their customers and then setting the internal goal a little higher. This will maximize internal resources (usually time and money) and deliver a product or service that satisfies the customer’s idea of “quality.”

Case in point: Several months back, I was assembling several bar clamps and needed a set of cutting tools used to put the thread on the end of metal pipes – a somewhat exotic tool for a woodworker’s shop. Shopping around, I could easily drop $300 for a five star “professional” set or $35 for a set that was rated to be somewhat mediocre. I’ve gone high end on many of the tools in my shop, but in this case the $35 set was the best solution for my needs. Most of the negative reviews revolved around issues with durability after repeated use. My need was extremely limited and the “valuable and good enough” threshold was crossed at $35. The tool set performed perfectly and more than paid for itself when compared with the alternatives, whether that be a more expensive tool or my time to find a local shop to thread the pipes for me. This would not have been the case for a pipefitter or someone working in a machine shop.

By understanding where the “good enough and valuable” line is, project and organization leaders are in a better position to evaluate the benefits of incremental improvements to core products and services that don’t break the bank or burn out the people tasked with delivering the goods. Of course, determining what is “good enough” depends on the end goal. Sending a rover to Mars, “good enough” had better be as near to perfection as possible. Threading a dozen pipes for bar clamps used in a wood shop can be completed quite successful with low quality tools that are “good enough” to get the job done.


1Volume 1 of Principia Mathematica by Alfred North Whitehead and Bertrand Russell (Cambridge University Press, page 379). The proof was actually not completed until Volume 2.

(This article cross-posted at LinkedIn.)

Relative Team Expertise and Story Sizing

In Parkinson’s Law of Triviality and Story Sizing, I touched on the issue of relative expertise among team members during collaborative efforts to size story cards. I’d like to expand on that idea by considering several types of team compositions.

Team 1 is a tight knit band of four software developers represented in Figure 1.

Figure 1 - Team 1
Figure 1 – Team 1

Their preferred domain and depth of experience is represented by the color and area of their respective circles. While they each have their own area of expertise, there is a significant overlap in common knowledge. All four of them understand the underlying architecture, common coding practices, and fundamental coding principles. Furthermore, there is a robust amount of inter-domain expertise. When needed, the HTML5/CSS developer can probably help out with JavaScript issues, for example. The probability of this team successfully working together to size the stories in the product backlog is high.

Team 1 represents a near-ideal team composition for a typical software related project. However, the real world isn’t so generous in it’s allocation of near-ideal, let alone ideal, teams. A typical team for a software related project is more likely to resemble Team 2, as represented in Figure 2.

Figure 2 - Team 2
Figure 2 – Team 2

In Team 2, the JavaScript developer is fresh out of college,  new to the company and new to the business. His real-world experience is limited so his circle of expertise is smaller relative to his teammates. The HTML5/CSS developer has been working for the company for 10 years and knows the business like the back of her hand. So she has a much wider view of how her work impacts the company and product development. As a team, there is much less overlap and options for helping each other through a sprint is diminished.  As for collaborative story sizing efforts, the HTML5/CSS and C# developers are likely to dominate the conversation while the JavaScript developer agrees with just about anything not JavaScript related.

As Agile practices become more ubiquitous in the business world, team composition beings to resemble Team 3, as shown in Figure 3.

Figure 3 - Team 3
Figure 3 – Team 3

The mix now includes non-technical people – content developers and editors, strategists, and designers. Even assuming an equal level of experience in their respective domains, the company, and the business environment, there is very little overlap. Arriving at a consensus during a story sizing exercise now becomes a significant challenge. But again, the real world isn’t even so kind as this. We are increasingly more likely to encounter teams that resemble Team 4 as shown in Figure 4.

Figure 4 - Team 4
Figure 4 – Team 4

As before, the relative circle of expertise among team members can vary quite a bit. When a team resembles the composition of Team 4, the software developers (HTML5/CSS and C#) will have trouble understanding what the Learning Strategist is asking for while the Learning Strategist may not understand why what he wants the software developers to deliver isn’t possible.

When I’ve attempted to facilitate story sizing sessions with teams that resemble Team 4 they either become quite contentious (and therefore time consuming) or team members that don’t have the expertise to understand a particular card simply accept the opinion of the stronger voices. Neither one of these situations is desirable.

To counteract these possibilities, I’ve found it much more effective to have the card assignee determine the card size (points and time estimate) and work to have the other team members ask questions about the work described on the card such that the assignee and the team better understand the context in which the card is positioned. The team members that lack domain expertise, it turns out, are in a good position to help craft good acceptance criteria.

  • Who will consume the work product that results from the card? (dependencies)
  • What cards need to be completed before a particular card can be worked on? (dependencies)
  • Is everything known about what a particular card needs before it can be completed? (dependencies, discovery, exploration)

At the end of a brief conversation where the entire team is working to evaluate the card for anything other than level of effort (time) and complexity (points), it is not uncommon for the assignee to reconsider their sizing, break the card into multiple cards, or determine the card shouldn’t be included in the sprint backlog. In short, it ends up being a much more productive conversation if teammates aren’t haggling over point distinctions or passively accepting what more experienced teammates are advocating. The benefit to the product owner is that they now have additional information that will undoubtedly influence the product backlog prioritization.